Pattern Matching

- We informally use pattern matching all the time in real life.

- Informally, a **pattern** is an expression containing **variables**, for which other expressions may be substituted. The problem of matching a pattern against a given expression consists of finding a suitable substitution that makes the pattern identical to the desired expression, if one exists at all.

- For example, we may apply the commutativity of +.

\[
x + y = y + x
\]
to the formula

\[
F = 1 + 2 + 3
\]
to obtain an equivalent formula

\[
3 + 2 + 1
\]
Here the “meta-variables” \(x\) and \(y\) were replaced by numbers. How?

Higher-Order Functions

- In functional programming languages, parameters may denote **functions** and be used in definitions of other, so-called **higher-order**, functions.

- One example of a higher-order function is the function apply defined below, which applies its first argument (a function) to all elements in its second argument (a list of suitable type).

```sml
- fun apply(f,L) =
  = if (L=[]) then []
  = else f(hd(L))::apply(f,tl(L));
val apply = fn : ("a -> 'b) * 'a list -> 'b list
```

We may apply apply with any function as argument.

```sml
- fun square(x) = (x:int)*x;
val square = fn : int -> int
- apply(square,[2,3,4]);
val it = [4,9,16] : int list
```

- The function `doubleall we defined may be considered a special case of supplying apply with first argument `double` (a function we defined in a previous lecture).

```sml
- apply(double,[1,3,5,7]);
val it = [2,6,10,14] : int list
```

- Look at the predefined SML map function.

Function Definition by Patterns

- In SML there is an alternative form of defining functions via **patterns**.

- The general form of such definitions is:

```sml
fun <identifier>(<pattern1>) = <expression1>
| <identifier>(<pattern2>) = <expression2>
| ...[
| <identifier>(<patternN>) = <expressionN>;
```

where the identifiers, which name the function, are all the same, all patterns are of the same type, and all expressions are of the same type.

- For example, an alternative definition of the reverse function is:

```sml
- fun reverse(nil) = nil
  = | reverse(x::xs) = reverse(xs) @ [x];
val reverse = fn : 'a list -> 'a list
```

- In applying such a function to specific arguments, the patterns are inspected in order and the **first match** determines the value of the function.
Mutual Recursion

- Sometimes the most convenient way of defining (two or more different) functions is in **mutual dependence of each other**.

- Consider the functions, `even` and `odd` that test if a number is even and odd. We can define them in the following way.

```sml
- fun even(0) = true
  = | even(m) = odd(n-1)
  = and
  = odd(0) = false
  = | odd(n) = even(n-1);
val even = fn : int -> bool
val odd = fn : int -> bool
```

SML uses the keyword and (not to be confused with the logical operator `and` also) for such mutually recursive definitions.

Neither of the two definition is acceptable by itself.

```sml
- even(2);
  val it = true : bool
- odd(3);
  val it = true : bool
```

- Consider two functions, `take` and `skip`, both of which extract alternate elements from a given list, with the difference that `take` starts with the first element (and hence extracts all elements at odd-numbered positions), whereas `skip` skips the first element (and hence extracts all elements at even-numbered positions, if any).

```sml
- fun take(L) =
  = if L = nil then nil
  = else hd(L)::skip(tl(L))
  = and
  = skip(L) =
  = if L=nil then nil
  = else take(tl(L));
val take = fn : 'a list -> 'a list
val skip = fn : 'a list -> 'a list

- take[1,2,3];
val it = [1,3] : int list
- skip[1,2,3];
val it = [2] : int list
```

Sorting

- We next design a function for **sorting a list of integers**.

- More precisely, we want to define an SML function, `sort : int list -> int list` such that `sort(L)` is a sorted version (in non-descending order) of `L`.

- Sorting is an important problem for which a large variety of different algorithms have been proposed.

- The method we will explore is based on the following idea. To sort a list `L`,
 - `first split L` into two disjoint sublists (of about equal size),
 - then (recursively) `sort` the sublists, and
 - finally `merge` the (now sorted) sublists.

This recursive method is known as **Merge-Sort**.

- It evidently requires us to define suitable functions for
 - splitting a list into two sublists and
 - merging two sorted lists into one sorted list.
• First we consider the problem of merging two sorted lists.
• A corresponding recursive definition can be easily defined by distinguishing between the different cases, as to whether one of the argument lists is empty or not.
• The following SML definition is formulated in terms of patterns (against which specific arguments in applications of the function will be matched during evaluation).

```sml
- fun merge([],M) = M
  | merge(L,[]) = L
  | merge(x::xl,y::yl) = if (x:int)<y then x::merge(xl,y::yl)
                           else y::merge(x::xl,y::yl);
val merge = fn : int list * int list -> int list
- merge([1,5,7,9],[2,3,5,5,10]);
val it = [1,2,3,5,5,7,9,10] : int list
- merge([],[1,2]);
val it = [1,2] : int list
- merge([1,2],[1]);
val it = [1,2] : int list
• How do we split a list? Recursion seems to be of little help for this task, but fortunately we have already defined suitable functions that solve the problem.
```

Finally, some examples:

```sml
- sort[];
val it = [] : int list
- sort[1];
val it = [1] : int list
- sort[1,2];
val it = [1,2] : int list
- sort[2,1];
val it = [1,2] : int list
- sort[1,2,3,4,5,6,7,8,9];
val it = [1,2,3,4,5,6,7,8,9] : int list
- sort[9,8,7,6,5,4,3,2,1];
val it = [1,2,3,4,5,6,7,8,9] : int list
- sort[1,2,1,2,2,2,2,2,2] : int list
```

Merging

Merge Sort

• Using take and skip to split a list, we obtain the following function for sorting.

```sml
- fun sort(L) =  
  | if L=[] then []
  | else merge(sort(take(L)),sort(skip(L)));
val sort = fn : int list -> int list
```

Don't run this function, though, as it doesn't quite work. Why?

• To see where the problem is, observe what the result is of applying take to a one-element list.

```sml
- take[1];
val it = [1] : int list
```

Thus in this case, the first recursive call to sort will be applied to the same argument!

• Here is a modified version in which one-element lists are dealt with correctly.

```sml
- fun sort(L) =  
  | if L=[] then []
  | else if tl(L)=[] then L
  | else merge(sort(take(L)),sort(skip(L)));
val sort = fn : int list -> int list
```

Tracing Mergesort

• It is important to be able to trace the execution of the mergesort program to convince yourself that it works correctly.

![Mergesort Diagram](image_url)

• In the course of executing the recursive algorithm, the computer has to keep track of what work still needs to be done as it is interrupted with additional recursive calls.
Tracing Mergesort

How to split?

![Diagram of Mergesort](image)

Tower Moves

- First consider how many moves are needed, at the least, to transfer a tower of \(k \) disks.
- Observe that we need to get to the following intermediate configuration, so as to be able to move the largest disk.

![Diagram of Tower Moves](image)

That is, we have to transfer the \(k - 1 \) smaller disks to the middle pole, we can then move the largest disks from the first to the third pole, and finally the \(k - 1 \) smaller disks from the second pole to the third pole.

- Let \(M(k) \) be the minimum number of moves required to transfer \(k \) disks from one pole to another pole. This function \(M \) satisfies the recursive identity:
 \[
 M(k) = M(k-1) + 1 + M(k-1) = 2M(k-1) + 1,
 \]
 for all \(k > 0 \).

In addition, we set \(M(0) = 0 \), so that by the above identity \(M(1) = 1 \), which is correct as one move suffices to transfer a tower containing only a single disk.

The Tower of Hanoi

- The tower of Hanoi consists of a fixed number of disks stacked on a pole in decreasing size, that is, with the smallest disk at the top.

![Diagram of Tower of Hanoi](image)

- There are two other poles and the task is to transfer all disks from the first to the third pole, one at a time without ever placing a larger disk on top of a smaller one.

- There is an elegant solution to this problem by recursion.

Minimum Number of Moves

- \(M(0) = 0 \)
 \[
 M(k) = M(k-1) + 1 + M(k-1) = 2M(k-1) + 1 \]
 for all \(k > 0 \).

- Let us evaluate the function for some arguments:
 \[
 M(0) = 0 \\
 M(1) = 2M(0) + 1 = 1 \\
 M(2) = 2M(1) + 1 = 3 \\
 M(3) = 2M(2) + 1 = 7 \\
 M(4) = 2M(3) + 1 = 15 \\
 M(5) = 2M(4) + 1 = 31 \\
 M(6) = 2M(5) + 1 = 63 \\
 \]

- The values grow fairly fast. In fact one can show that the function \(M \) can be explicitly defined by
 \[
 M(k) = 2^k - 1,
 \]
 for all \(k \geq 0 \). That is, function values grow exponentially with the argument.

- This tells us that a lot of moves are needed to transfer a tall tower, though we don’t know the actual sequence of moves yet. For that purpose we will write an SML function.
Tower of Hanoi in SML

- Poles are represented by the numbers 1, 2, and 3.
- We represent a move as a pair of integers \((x, y)\). That is, \((x, y)\) is interpreted as moving a disk from pole \(x\) to pole \(y\). The pair \((x, y)\) is an example of a tuple of length 2 and type \(\text{int} \times \text{int}\).
- The function `tower` takes three integer arguments \(k, x\), and \(y\) such that \(k \geq 0\), \(1 \leq x \leq 3\) and \(1 \leq y \leq 3\). It returns a list of moves that transfer a tower of \(k\) discs from pole \(x\) to pole \(y\).

The result returned by `tower` is of type \(\text{int} \times \text{int}\) list.

- Here are some simple sequences of moves.

\[
\text{tower}(1,1,3);
\text{val it = }[(1,3)] \text{ : (int * int) list}
\]

\[
\text{tower}(2,2,2);
\text{val it = }[] \text{ : (int * int) list}
\]

and a few longer ones,

\[
\text{tower}(2,1,3);
\text{val it = }[(1,2),(1,3),(2,3)] \text{ : (int * int) list}
\]

\[
\text{tower}(3,1,3);
\text{val it = }[(1,3),(1,2),(3,2),(1,3),(2,1),(2,3),(1,3)]
\text{ : (int * int) list}
\]

\[
\text{tower}(4,1,3);
\text{val it = }[(1,2),(1,3),(2,3),(1,2),(3,1),
(3,2),(1,2),(1,3),(2,3),(2,1),
(3,1),(2,3),(1,2),(1,3),(2,3)]
\text{ : (int * int) list}
\]

- The function `comp`, if provided with two of the numbers 1, 2, or 3 as arguments (2 poles), returns the third (pole).

\[
\text{fun comp}(x,y) = 6-(x+y);
\text{val comp = fn : int * int -> int}
\]

\[
\text{comp}(3,1);
\text{val it = 2 : int}
\]

- The function `tower` is defined by:

\[
\text{fun tower}(k, x, y) =
\begin{align*}
& \text{if } (k=0 \text{ or else } x=y) \text{ then } [] \\
& \text{else if } k=1 \text{ then } [(x,y)] \\
& \text{else tower}(k-1, x, \text{comp}(x,y)) \\
& \text{else tower}(k-1, x, \text{comp}(x,y))
\end{align*}
\]

\[
\text{val tower = fn : int * int * int}
\text{ -> (int * int) list}
\]

- The second line indicates that no move is needed if \(k = 0\) or the tower is to remain at the same pole.
- The third line provides an explicit solution for moving a tower of one disk.
- The fourth and fifth line show that in the general case we can

(a) move \(k-1\) disks from \(x\) to the “auxiliary” pole \(z\),
(b) move the largest disk from \(x\) to \(y\), and
(c) move \(k-1\) disks from \(z\) to \(y\).