Theorem Proving in the Computer Science World

Christelle Scharff, PhD

Pace University, New York
Maths-CS seminar, 04/02/2003
Outline

- What is theorem proving?
- What are the proving techniques?
- What is a theorem prover?
- Theorem proving in the real world
- Rewriting proofs or valley proofs
 - Some definitions and notations
 - The Word problem
 - Rewriting and all that
 - Completion
- My research
What is theorem proving?
What are the proving techniques?

- Induction proofs
- Contradiction proofs
- Saturation proofs / Compilation proofs
- Rewriting proofs / Valley proofs
What is theorem proving?

- Theorem proving = Automated deduction = Automated reasoning
- It is concerned with the mechanization of the deductive process in its fullest meaning [Loveland, 99].
- Active area of research since the 1950s. The more recent achievements are software.
Mechanization of reasoning

- Aristotle Syllogism
 All men are mortal.
 Socrates is a man.
 Therefore, Socrates is mortal.

- Formalization of the problem - Which logic to reason in?
 Hypotheses: $\text{Man}(x) \Rightarrow \text{Mortal}(x)$ and $\text{Man}(\text{Socrates})$

- Goal to prove: $\text{Mortal}(\text{Socrates})$

- Prove the goal - How???????
What is a theorem prover or deductive software?
What is a theorem prover?

Theorem prover = Inference rules + Proof strategies

- **Inference rules**: How to deduce new data? How to remove data?
Properties

- **Soundness**
 Do not prove that True = False
 Proving only true formulas.

- **Completeness**
 If a formula is true, it can be proved.

Syntax/Semantics
Challenges

- The basic infrastructure of theorem provers requires investment in:
 - syntactic tools (parsers, typecheckers,...),
 - primitive operations (substitution, matching, unification...),
 - advanced operations (constraint satisfaction, rewriting, decision procedures...)
- Many of the problems are undecidable or if decidable, algorithms are exponential.
Theorem proving in the real world

- Assist mathematicians
 - Moufang identities in alternative rings - SBREVE [Anantharaman, Hsiang, 90]
 - Robbins algebras - Robbins algebra are boolean EQP [McCune, 97]

- Software verification
 - Critical applications - PVS
 - Authentication protocols - Isabelle, ELAN, DATAC
• Hardware verification
 – Pentium chip - RRL [Kapur, Subramaniam, 98]

• Artificial intelligence (knowledge representation, expert systems)

• Programming language paradigm (logic programming, functional programming, rewrite programming)
Rewriting proofs/Valley proofs
What logic to reason in?
Terms

- A term is
 - a variable \((x, y, z\ldots)\)
 - a constant \((a, b, c\ldots)\)
 - \(f(t_1, \ldots, t_n)\) where \(f\) is a \(n\)-ary function symbol and each \(t_i\) is a term.
- A ground term \((f(a), g(c, d)\ldots)\) has no variables.
- \(u[s]\): The term \(u\) contains the term \(s\).
Example

- $f(a + x, h(f(a, b)))$ is represented by the tree:
Equalities

• \(\approx\) is a congruence relation i.e.
 1. Reflexive: \(x \approx x\)
 2. Symmetric: \(x \approx y \rightarrow y \approx x\)
 3. Transitive: \(x \approx y \text{ and } y \approx z \rightarrow x \approx z\)
 4. Congruence:
 \(x_1 \approx y_1 \text{ and } \ldots \text{ and } x_n \approx\)
 \(y_n \rightarrow f(x_1, \ldots, x_n) \approx f(y_1, \ldots, y_n)\)

• Examples: \(\forall x, y, (x + y \approx y + x)\) (C),
 \(\forall x, y, z, ((x + y) + z) \approx x + (y + z))\) (A),
 \(f(a) \approx b, \forall x, (f(x) \approx a)\)
First order logic

- First order logic
 \[\forall x, y, \ (\text{parent}(x, y) \text{ and } \text{parent}(y, z) \Rightarrow \text{grandparent}(x, z)) \]
- First order logic with equality
 \[\forall x, \ (x \neq 0 \Rightarrow \exists y, \ (y \approx 1/x)) \]
- First order logic with equalities ONLY.
How to prove a theorem?
The Word problem

- Given a set of equalities E and a goal $s \approx t$, is $s \approx t$ true in all models of E?
 Word problem is undecidable.

- Goal: Find a method which OFTEN gives a decision procedure.
Solutions to the Word problem

- **Solution 1:** Generate all equalities implied by E using inference rules and strategies.

 Disadvantage of solution 1: Generation of all equalities may not halt, not goal oriented.

- **Solution 2:** Apply equalities to goal until both sides are the same.

 Benefit of solution 2: Goal oriented.

 Disadvantage of solution 2: May not halt if goal is false.
Example

- Group axioms:
 \[x + e \cong x \]
 \[x + i(x) \cong e \]
 \[(x + y) + z \cong x + (y + z) \]

- How to prove that: \(x + e \cong e + x \)?

- \[e + x \cong e + (x + e) \cong e + (x + (i(x) + i(i(x)))) \]
 \[\cong e + (x + i(x)) + i(i(x)) \cong e + (e + i(i(x)))) \]
 \[\cong (e + e) + i(i(x)) \cong e + i(i(x)) \cong (x + i(x)) + i(i(x)) \]
 \[\cong x + (i(x) + i(i(x)))) \cong x + e \]
Rewriting

- Using equalities with an orientation using an ordering
 If $s \equiv t$ and $s \succ t$, then we write $s \rightarrow t$.
- An ordering \succ is a binary relation:
 - Reflexive: $x \succ x$
 - Transitive: $x \succ y$ and $y \succ z \Rightarrow x \succ z$
- C cannot be oriented. A can be oriented into
 $(x + y) + x \rightarrow x + (y + z)$.
A simple rewrite system

\[\begin{align*}
\ast\ast & \rightarrow \circ \\
\ast\ast & \rightarrow \circ \\
\ast\ast & \rightarrow \bullet \\
\circ & \rightarrow ??
\end{align*} \]
Differentiation rewrite system

- The differentiation operator D with respect to a variable X

- $D(X) \rightarrow 1$
- $D(C) \rightarrow 0$
- $D(x + y) \rightarrow D(x) + D(y)$
- $D(x - y) \rightarrow D(x) - D(y)$
- $D(-x) \rightarrow -D(x)$
- $D(x \ast y) \rightarrow (x \ast D(y)) + (y \ast D(x))$
- $D(x/y) \rightarrow D(x)/y - ((x \ast D(y))/(y \ast y))$
- $D(ln(x)) \rightarrow D(x)/x$
A program

- Append on lists

 \(\text{append}(\text{nil}, y) \rightarrow y \)
 \(\text{append}(\text{cons}(x, y), z) \rightarrow \text{cons}(x, \text{append}(y, z)) \)
Confluence of rewrite systems

- Confluence: If \(s \xrightarrow{*} t \) and \(s \xrightarrow{*} u \), then there exists \(v \) such that \(t \xrightarrow{*} v \) and \(u \xrightarrow{*} v \).
Termination of rewrite systems

- **Termination:** There exists no infinite sequence
 \[s_1 \rightarrow \ldots \rightarrow s_n \rightarrow \ldots \]

 Undecidable property.
Completion

- Solves the word problem
- Based on Rewriting.
- Main inference rule: Critical Pair inference rule
- Compilation of E using an ordering and CP
- Obtaining of a deterministic rewrite system
- Proving is done using a Rewriting proof (valley proof).

$s \approx t$ is true if there exist a term u such that $s \rightarrow^* u$ and $t \rightarrow^* u$.
Critical Pair

\[
\begin{align*}
g(a) & \rightarrow b & a & \rightarrow c \\
g(c) & \rightarrow b
\end{align*}
\]

((b, g(c) is a critical pair))

\[
\begin{align*}
g(x) & \rightarrow f(x) & g(a) & \rightarrow b \\
f(a) & \rightarrow b
\end{align*}
\]

((f(a), b) is a critical pair)
Example

- Group axioms:

\[x + e \approx x \]
\[x + (y + z) \approx (x + y) + z \]
\[x + i(x) \approx e \]

- How to check that:

\[x + e \approx e + x \]
Example (cont)

E is transformed to the rewrite system

\[
egin{align*}
x + e & \rightarrow x \\
e + x & \rightarrow x \\
x + (y + z) & \rightarrow (x + y) + z \\
x + i(x) & \rightarrow e \\
i(x) + x & \rightarrow e \\
i(e) & \rightarrow e \\
(y + i(x)) + x & \rightarrow y \\
(y + x) + i(x) & \rightarrow y \\
i(i(x)) & \rightarrow x \\
i(x + y) & \rightarrow i(y) + i(x)
\end{align*}
\]
Example (cont)

- The proof of $e + x \approx x + e$ is now obvious.
- The proof of $i(x + y) \approx i(y) + i(x)$ is now obvious.
My research

- Completion modulo with constraints and simplification
- Decision procedures
- ’Little Engines of Proofs’ proposal
References