Towards correct programs

- A *correct program* is not *just more reliable* it is *reliable*.
- A *correct program* does not *rarely* go wrong it cannot *go wrong*.
- A *correct program* does not *almost* solve a problem it *solves a problem*.
- “The correct program should be the philosopher stone for the programmer, the pole star of his efforts.” Andrew Cumming.

How to test correctness?

- Testing may not be used as evidence of correctness for any but the most trivial of programs.
- Tests are almost never exhaustive.
- Having lots of tests which give the right results may be *reassuring* but it can never be *convincing*.
- We should relying on *reasoning* (*proofs*).
- The intellectual effort involved in proving the correctness of even the simplest programs is immense (expensive).
- Formal methods have a role to play in safety-critical systems (air traffic control, military systems, financial systems...)

Functional programming

- Logical analysis of functional programs is possible.
- It is possible to make *assertions* (correctness or properties) and prove them.
- For imperative programs (i.e. those written in languages such as C, C++, or Java...) it is is harder (second part of the lecture).
• fun f 0 = 0
 | f(n) = f(n-1)+2*n-1;

 fun n:int = n*n;

 Prove using induction that f(n) is equivalent to g(n).

 \- Basis case: n=0
 \quad f(n) = f(0) = 0
 \quad g(n) = g(0) = 0^2
 \quad So f(n) = g(n) for n = 0.

 \- Induction hypothesis: Assume f(n) = g(n) for an arbitrary and fixed n (n ≥ 0).

 \- We prove that f(n + 1) = g(n + 1).
 \quad f(n + 1)
 \quad = f(n) + 2*(n + 1) - 1 for n ≥ 1.
 \quad = n^2 + 2(n + 1) - 1 (induction hypothesis)
 \quad = n^2 + 2n + 2 - 1
 \quad = n^2 + 2n + 1
 \quad = (n + 1)^2
 \quad = g(n + 1)

 \- Conclusion

We label the elements of the list of length n+1 as [a_1, a_2, a_3, ..., a_n, a_{n+1}].

Then \text{hd}(L) = a_1 and \text{tl}(L) = [a_2, a_3, ..., a_n, a_{n+1}].

So reverse(L)
\quad = reverse(\text{tl}(L))@[\text{hd}(L)] (definition of reverse)
\quad = reverse([a_2, a_3, ..., a_n, a_{n+1}])@[a_1] (expanding \text{tl}(L) and \text{hd}(L))
\quad = [a_{n+1}, a_n, ..., a_3, a_2]@[a_1] (by induction hypothesis)
\quad = [a_{n+1}, a_n, ..., a_3, a_2, a_1]

Lists - Reverse

• fun reverse(L) = if (L=[]) then L
 else if (tl(L)==[]) then L
 else reverse(tl(L))@[hd(L)];

 Prove by induction that the reverse function does what we want it to do.

 \- Basis case: \text{L} = \text{nil} or \text{L} = [x].
 If the list has zero or one element then it is its own reverse (handled by the base cases of the function).

 \- Induction hypothesis:
 Assume that reverse works for any list of length n, (n ≥ 0).

 \- We prove that reverse works for any list of length n+1.

Lists - Length

Proving a property

Structural induction

• fun length nil = 0
 | length L = 1 + length(tl(L));

 Prove that length(L) ≥ 0 for all list L.

 \- Proof on the structure of the list L.
 \- Basis case: \text{L} = \text{nil}
 length(nil) = 0
 So length(L) ≥ 0.

 \- Induction Hypothesis: Assume that length(L) ≥ 0 for an arbitrary and fixed list L.'

 \- L = x::L'
 length(x :: L')
 = 1 + length(L')
 But length(L') ≥ 0 (induction hypothesis)
 So length(x :: L') ≥ 1
 So length(x :: L') ≥ 0

 \- Conclusion
Lists - Take and skip

- fun take(L) = if L=[] then []
 else hd(L)::take(tl(L))
and
 skip(L) = if L=[] then []
 else take(tl(L));

Prove by induction that the `take` and `skip` functions do what we want them to do.

- **Basis cases:**
 - List of length 0:
 take([]) = []
 skip([]) = []
 - **Induction hypothesis:**
 Assume `take` and `skip` work on lists of length `n` (`n ≥ 0`).
 - We prove that `take` and `skip` work on lists of length `n + 1`.
 Let `L = [s_1, s_2, s_3, ..., s_n, s_{n+1}]`.
 So `tl(L) = [s_2, s_3, ..., s_n, s_{n+1}]`.

- **Part 1: Prove that `take` works.**
 - `take(L)`
 = `s_1 :: skip(tl(L))` (by definition)
 = `s_1 :: skip([s_2, s_3, ..., s_n, s_{n+1}])`
 - If `n` is even,
 = `s_1 :: [s_2, s_3, ..., s_{n-1}, s_{n+1}]` (induction hypothesis)
 = `[s_1, s_3, s_5, ..., s_{n+1}]`
 - If `n` is odd,
 = `s_1 :: [s_2, s_4, ..., s_{n+1}]` (induction hypothesis)

- **Part 2: Prove that `skip` works.**
 - `skip(L)`
 = `take(tl(L))` (by definition)
 = `take([s_2, s_3, ..., s_n, s_{n+1}])`
 - If `n` is even,
 = `[s_2, s_4, ..., s_n, s_{n+1}]` (induction hypothesis)
 - If `n` is odd,
 = `[s_2, s_4, ..., s_{n-1}, s_{n+1}]` (induction hypothesis)

Preconditions and Postconditions

- **// PRECONDITION**
 PROGRAM CODE
 // POSTCONDITION
 - A precondition is the condition that is true before the code executes.
 - A postcondition is the condition that is true if the preconditions are true and the code executes completely.

- **Examples:**
 // Pre: x < 0
 `y = x * -2;`
 // Post: x < 0 AND y > 0 AND y = -2x

 // Pre: x ≥ 0
 `x = x % 5;`
 // Post: x' ≥ 0 AND x' ≤ 4

Imperative programming
Assignment Rule

- Given:
 // P
 \texttt{\textit{x} \equiv \textit{E};}
 // Q

 – where \textit{x} is a variable, \textit{E} is an expression, \textit{P} is a precondition and \textit{Q} is a postcondition.

- The Assignment rule is the following:
 Derive \textit{P} by replacing all occurrences of \textit{x} in \textit{Q} with \textit{E}.
 NOTE: \textit{x} might be represented as \textit{x'} in the postcondition \textit{Q}.

- The assignment rule is a means of reasoning backward from a goal back to the required starting conditions.

IF statement

- See handout.

Loop Invariant

- An invariant is a condition that is true before and after a statement executes.

- A loop invariant is true in the following four locations:
 \begin{verbatim}
 // I
 while (C)
 {
 // I
 loop body
 // I
 }
 // I
 \end{verbatim}

- Example:
 \begin{verbatim}
 sum = 0; J = 0; \quad J \quad sum \quad \text{while (J < N)} \quad 0 \quad 0
 \{
 J = J + 1; \quad 1 \quad 1
 sum = sum + J; \quad 2 \quad 1+2
 \}
 \end{verbatim}

 \begin{verbatim}
 \text{I = \{ sum = 1+2+...+J \} }
 \text{NOTE: When J=0, 1+...+J is vacuous.}
 \end{verbatim}

WHILE rule

- \begin{verbatim}
 // P
 \texttt{\textit{S1;}}
 while (C)
 {
 \texttt{\textit{S2;}}
 }
 // Q
 \end{verbatim}

 where \textit{C} is a Boolean expression, \textit{S1} and \textit{S2} contain assignment statements, \textit{P} is a precondition, \textit{Q} is a postcondition and \textit{I} is the loop invariant.

- The While rule is the following:
 - 1. \{P\} \textit{S1} \{I\}
 - 2. \{I\} \textit{S2} \{I\}
 - 3. I AND NOT C \rightarrow Q
 - 4. The loop terminates.
Limitations of formal reasoning

- All mathematical truths CANNOT be determined by following a valid logical proof procedure.
- Kurt Gödel (1930) (Czech mathematician) proved this result known as the Incompleteness Theorem of Gödel.

Turing’s Halting problem

- Alan Turing (1930) proved the incompleteness of algorithmic reasoning.
- Turing posed the following problem (since called the Halting Problem):

 It is **impossible** to write a computer program H that is passed a single parameter P, where P is itself a program, such that H always returns true if P halts and false if P does not.

Can we prove everything?

Ideas of the proof

- Assume we could write such a program H. Then let $H(X)$ be a library routine callable by any other program.

  ```
  program Contrary;
  #include H;
  begin
  if H(Contrary)
  then
    while true
      {/*Infinite Loop */}
  else
    halt;
  end;
  ```

- If H claims that the program P passed as parameter terminates, it deliberately enters an infinite loop.
- If H claims that the program P passed as parameter will not halt, it immediately halts.