Databases

- We will be particularly interested in relational databases.
- Data are stored in tables.
- Why mathematics?
 Relational databases are inspired of relations - mathematics.

Tables

- Set of rows (no duplicates)
- Each row describes a different entity.
- Each column states a particular fact about each entity.
 - Has an associated domain.

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>John</td>
<td>123 Main</td>
<td>Fresh</td>
</tr>
<tr>
<td>2222</td>
<td>Mary</td>
<td>321 Oak</td>
<td>Soph</td>
</tr>
<tr>
<td>1234</td>
<td>Bob</td>
<td>444 Pine</td>
<td>Soph</td>
</tr>
<tr>
<td>9999</td>
<td>Joan</td>
<td>777 Grand</td>
<td>Senior</td>
</tr>
</tbody>
</table>
Description of Sets

- A set with no elements is called an **empty set**. It is denoted \(\emptyset \) or \(\{ \} \). It is **unique**.

- The number of elements of a set \(S \) is denoted \(|S| \). We say also the **cardinal** of \(S \).

- **Finite** sets can in principle be described by **listing** their elements.

 That is, we write

 \[\{ x_1, \ldots, x_n \} \]

 to denote the set consisting of elements \(x_1, \ldots, x_n \).

- A more general mechanism for describing a set (finite or infinite) is to characterize via a **logical formula** a condition (property) its elements have to satisfy:

 For every set \(S \) and formula \(P(x) \) there exists a set, denoted by

 \[\{ x \in S | P(x) \} \]

 that consists of all elements of \(S \) for which \(P \) is true.

Examples of Sets

- \(\{\emptyset, 1, (4, 5), "bonjour"\} \)

- The (finite) set of integers between \(-2 \) and \(5 \):

 \[\{ n \in \mathbb{Z} | -2 < n < 5 \} \]

- The (open) interval of real numbers between \(-2 \) and \(5 \):

 \[\{ x \in \mathbb{R} | -2 < x < 5 \} \]

- The (infinite) set of even integers:

 \[\{ n \in \mathbb{Z} | \exists k (n = 2k) \} \]

- From a general description it may not always be obvious what the elements of the set are:

 - \[\{ (x, y, z) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} | (z = x + y) \} \]
 - \[\{ (x, y, z) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} | \exists n \in \mathbb{N}, (n > 2 \land x^n + y^n = z) \} \]

Set Theory

- The basic concepts of sets theory are **sets** and the **elements-relationship**.

- The symbol \(\in \) is commonly used to denote the **membership relation**, and one writes \(x \in A \) to denote the proposition \(x \) is an element of \(A \) (which may be true or false).

- Intuitively, sets are **unordered** collections of objects, where the **multiplicities** of elements don’t matter.

- **Examples**:

 \{1, 2\} = \{2, 1\}?
 \{1, 2\} = \{1, 1, 2, 2\}?
 \{1, 2, 3\} = \{1, 1, 1, 3\}?

Ordered Pairs and Tuples

- Sets are **unordered** collections of elements.

- **Pairs**, or more generally **tuples**, are **ordered** collections of elements.

- **Examples**:

 - \((1, 2) \) is a pair (a tuple of length 2).

 - \((1, 2, 4, 5) \) is a tuple of length 4.

 - Tuples of different lengths are never equal.

- **Examples**:

 \[
 (1, 2) \neq (2, 1) \\
 (1, 2, 3) = (1, 3, 2) \\
 (1, 2, 3) \neq (1, 3, 2) \\
 (1, 2) = (1, 2) \\
 (1, 2) \neq (1, 2, 2)
 \]
Subsets (\subseteq)

- **Definition:**
 A set A is a **subset** of another set B, written $A \subseteq B$, if, and only if, every element of A is also an element of B.

- **Examples:**
 \[
 \{1, 2\} \subseteq \{1, 2, 3\}?
 \{1, 1, 2, 2\} \subseteq \{1, 2\}?
 \{1\} \subseteq \{2, 3, 5, 7\}?
 \]

- The subset relation is often used to establish equality of sets, based on the following lemma.

Lemma: If $A \subseteq B$ and $B \subseteq A$, then $A = B$.

Proper subsets (\subset)

- **Definition:**
 A set A is a **proper subset** of B, written $A \subset B$, if A is a subset of B, but not equal to B.

- **Examples:**
 \[
 \{1, 2\} \subset \{1, 2, 3\}?
 \{1, 2\} \subset \{1, 1, 2, 2\}?
 \]

Membership and subset relations

- Be careful about the distinction between the element relation and the subset relation.

- **Examples:**
 \[
 2 \in \{1, 2, 3\}?
 \{2\} \in \{1, 2, 3\}? \\
 2 \subseteq \{1, 2, 3\}? \\
 \{2\} \subseteq \{1, 2, 3\}? \\
 \{2\} \subseteq \{\{1\}, \{2\}\}? \\
 \{2\} \in \{\{1\}, \{2\}\}?
 \]

Property of the Empty Set

- **Theorem:**
 If \emptyset is an empty set, then $\emptyset \subseteq A$, for all sets A.

Cartesian Products

- Pairs and tuples provide us with a way of constructing new sets from given ones.
- **Definition:**
 If A and B are sets, then there exists a set $A \times B$ (read "A cross B"), called the *Cartesian product* of A and B, that consists of all ordered pairs (a, b), where $a \in A$ and $b \in B$.
- Symbolically,
 $$A \times B = \{(a, b) | a \in A \land b \in B\}.$$
- For example, if $A = \{1, 2\}$ and $B = \{4, 5\}$, then $A \times B = \{(1, 4), (1, 5), (2, 4), (2, 5)\}$.

More Set Operations

- Other operations for constructing sets include
 - set union (\cup)
 - set intersection (\cap)
 - relative complementation (or set difference) (\setminus)
 - complementation (c)

 They are defined as follows.

- Let A and B be subsets of some set U. We define:
 $$A \cup B = \{x \in U | x \in A \lor x \in B\}$$
 $$A \cap B = \{x \in U | x \in A \land x \in B\}$$
 $$B - A = \{x \in U | x \in B \land x \notin A\}$$
 $$A^c = \{x \in U | x \notin A\}$$

 Note that set difference can also be defined as follows:
 $$A - B = A \cap B^c.$$

- For example, let
 - R be the set of real numbers,
 - A the set $\{x \in R | -1 < x \leq 0\}$,
 - B the set $\{x \in R | 0 \leq x < 1\}$.

 What are $A \cup B$, $A \cap B$, $B - A$, and A^c?

Properties of the Empty Set

- **Theorems:**
 $$A \cup \emptyset = A$$
 $$A \cap \emptyset = \emptyset$$

Set Identities

- 1. Set union and intersection are commutative.
- 2. Set union and intersection are associative.
- 3. Distributivity: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 4. Double complement: $(A^c)^c = A$.
- 5. Idempotency: $A \cap A = A \cup A = A$.
- 6. De Morgan’s Laws:
 - $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.
- 7. Absorption: $A \cup (A \cap B) = A$ and $A \cap (A \cup B) = A$.
Venn Diagrams

- Sets can often be conveniently represented by **Venn diagrams**.
- The union $A \cup B$ of A and B is represented by:

![Venn Diagram](image)

- The intersection $A \cap B$ is represented by:

![Venn Diagram](image)

- The set difference $B - A$ is represented by:

![Venn Diagram](image)

Disjoint Sets

- Two sets A and B are said to be **disjoint** if they have no elements in common, i.e., $A \cap B = \emptyset$.

Examples:

Is $\{0, \{0\}\} \cap \{0\} = \emptyset$?
No, $\{\emptyset, \{0\}\} \cap \{0\} = \{0\}$.
Is $\{0, \{0\}\} \cap \emptyset = \emptyset$?
Yes, because $A \cap \emptyset = \emptyset$.

- A **partition** of a set A is a collection of pairwise disjoint sets A_1, \ldots, A_n such that

$$A = A_1 \cup A_2 \cup \cdots \cup A_n.$$

- For example, at the end of the semester I will partition the class into subsets with grades of A, $A-$, etc. It will be a partition, since each student gets one, and only one, grade.

Powersets (\mathcal{P})

- **Powerset Axiom:**

 If A is a set, then there exists a set, called the **powerset** of A and denoted by the symbol $\mathcal{P}(A)$, whose elements are exactly all the subsets of A.

Example:

If A is the set $\{1, 2, 3\}$, then

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Do we have $1 \in \mathcal{P}(A)$, or $2 \in \mathcal{P}(A)$, or $3 \in \mathcal{P}(A)$?
No, because $1 \notin \{1\}$, etc.

- If A has n elements, how many elements are there in its powerset?

Answer: 2^n. Why?

Relations

- **Relations** use ordered tuples to represent relationships among objects.

Examples:

- “x is a parent of y” — $(\text{Morris, Steve}), (\text{Ria, Steve})$
- “x is a number less than y” — $(3.42), (42, 43)$
- “Student number x is named y and majors in z” — $(124324443, \text{Mary, CSE}), (56356426, \text{Mary, PSY})$

- “x is an even number” ... (2)

- Essentially, a relation is the set of assignments which makes a predicate true.

Examples:

- $\text{IsParent} = \{(\text{Morris, Steve}), (\text{Ria, Steve})\}$
- $\text{LessThan} = \{(3.42), (42, 43)\}$
- $\text{MajorIn} = \{(124324443, \text{Mary, CSE}), (56356426, \text{Mary, PSY})\}$
- $\text{IsEven} = \{n \mid n = 2k\}$
Binary Relations

- Binary relations have two blanks, relating two objects.
- More formally, suppose A and B are sets. A **binary relation** from A to B is a set $R \subseteq A \times B$.
- Thus R is a set of ordered pairs (a, b) where $a \in A$ and $b \in B$.
- **Notation**: If $(a, b) \in R$ then we sometimes write aRb.
- **Example**: $A = \{2, 6, 7\}, B = \{1, 2, 5\}$. R_1 is “x in A is an integer multiple of y in B.” so $R_1 = \{(2, 1), (2, 2), (6, 1), (6, 2), (7, 1)\}$

The Parent-Of Relation

- The parent of relations, “x is a parent of y”, is a binary relation between pairs of people.
- **Table**: | Gene | Joan | William | Sue | Myrtle | Ormonde | Paula |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>William</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sue</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrtle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormonde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paula</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- **Graph**: [Diagram of a graph]

- Which representation is better for testing whether the pair (a, y) is in the relation?
- Which representation is better for capturing the overall structure?

Presenting Binary Relations

- Binary relations are particularly useful because they have two kinds of compact visual representation, tables and graphs.
- **Tables**:

<table>
<thead>
<tr>
<th>R</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

- **Graphs** are composed of **vertices** or nodes connected by edges or arcs.

There is an arc from a to b iff $(a, b) \in R$

General (n-ary) Relations

- Suppose A_1, A_2, \ldots, A_n are sets. A relation of A_1, A_2, \ldots, A_n is a set $R \subseteq A_1 \times A_2 \times \cdots \times A_n$.
- Thus R is a set of ordered n-tuples (a_1, a_2, \ldots, a_n) where $a_i \in A_i$.
- **Example**: $A_1 = N$, $A_2 = names$, $A_3 = majors$.

“Student number x is named y and majors in z” (124324443, Mary, CSE), (563565426, Mary, PSY) are tuples of the relation.

- Such structures are modeled by **hypergraphs**, a graph structure where each “edge” represents a subset of more than two vertices.
Relational Databases

Overview

- The most important commercial database systems today employ the relational model, meaning that the data is stored as tables of tuples, i.e. relations.
 A relation is a mathematical entity corresponding to a table:
 - row - tuple
 - column attribute.

- A Shakespearean killed relation would be:

<table>
<thead>
<tr>
<th>Killer</th>
<th>Victim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutus</td>
<td>Caesar</td>
</tr>
<tr>
<td>Hamlet</td>
<td>Laertes</td>
</tr>
<tr>
<td>Hamlet</td>
<td>Polonius</td>
</tr>
<tr>
<td>Laertes</td>
<td>Hamlet</td>
</tr>
<tr>
<td>Brutus</td>
<td>Brutus</td>
</tr>
<tr>
<td>Cassius</td>
<td>Caesar</td>
</tr>
</tbody>
</table>

- Requests for information from the database is made in a query language like SQL which is based on the notations of set theory and the predicate calculus.

- Example 1: Who killed Caesar?

 In SQL:
  ```sql
  SELECT Killer from Killed where victim='Caesar'
  ```
 This reads "select from relation 'killed' all tuples where the victim was Caesar, and report only the killer field from each.

- Example 2: Who was both a killer and a victim?

 In SQL:
  ```sql
  (SELECT Killer from Killed) INTERSECT (SELECT Victim from Killed)
  ```

 Much of the power of relational databases comes from the fact that we can combine different relations.

 For example, suppose we also have a died-by relation:

<table>
<thead>
<tr>
<th>Victim</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caesar</td>
<td>Daggers</td>
</tr>
<tr>
<td>Hamlet</td>
<td>Sword</td>
</tr>
<tr>
<td>Laertes</td>
<td>Sword</td>
</tr>
<tr>
<td>Polonius</td>
<td>Sword</td>
</tr>
<tr>
<td>Brutus</td>
<td>Sword</td>
</tr>
</tbody>
</table>

 We can combine the two tables with a join operation, which the tables based on common fields. For example, the join of killed and died-by is:

<table>
<thead>
<tr>
<th>Killer</th>
<th>Victim</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutus</td>
<td>Caesar</td>
<td>Daggers</td>
</tr>
<tr>
<td>Hamlet</td>
<td>Laertes</td>
<td>Sword</td>
</tr>
<tr>
<td>Hamlet</td>
<td>Polonius</td>
<td>Sword</td>
</tr>
<tr>
<td>Laertes</td>
<td>Hamlet</td>
<td>Sword</td>
</tr>
<tr>
<td>Brutus</td>
<td>Brutus</td>
<td>Sword</td>
</tr>
<tr>
<td>Cassius</td>
<td>Caesar</td>
<td>Daggers</td>
</tr>
</tbody>
</table>

- Example 3: Which killers used daggers?

 In SQL:
  ```sql
  SELECT Killer FROM Killed, Died_by WHERE Killed.victim=died_by.victim AND Method='Daggers'
  ```

- Note that this database design assumes that each victim can only be killed by one weapon (sorry, Rasputin).