Entity-Relationship model

- Chapter 2 in the book
- Chen 1976
Database design

• Goal: specification of database schema
 – Conceptual schema of data - Independent of the DBMS.

• Methodology:
 – Use E-R model to get a high-level graphical view of essential components (data) of the considered world and how they are related.

• E-R model: World viewed as set of:
 – Entities
 – Relations between entities
• Entity: a concrete object involved in the considered world.
 – Examples: a particular person (John), a particular class (cs387), a particular movie (Miss Congeniality), an academic department (CSIS)

• Entity type / Entity set: Set of similar objects.
 – Analogy: Entity/Variable - Entity Type/Variable type
 – Examples: students, classes, movies, departments
Entity type attribute

- **Attribute:** To each entity we associate a set of attributes that characterize it.
 - Examples: *fname* is an attribute for a student. *enrollment* is an attribute for a class.

- An **Entity type** is describe by a set of attributes.
 - Example: *Student*(fname, lname, address, hobbies, age)

- **Domain of an attribute:** Possible values of an attribute.
 - Examples:
 fname is a string.
 age is in \{0, 1, 2, \ldots, 149, 150\}.
 salary is a positive real number.
• Different types of attributes

 – **simple**
 – Example: \(\text{fname} \)

 – **composite**
 – Example: Consider the entity type
 \[
 \text{Student}(\text{name}, \text{address}, \text{hobbies}, \text{age})
 \]
 \(\text{name} \) is composed of the first name, the middle name and the last name of a student.

 \[
 \text{name} \quad \text{fname} \quad \text{gname} \quad \text{lname}
 \]

 – **single-valued**
 – one value

 – **multi-valued**
 – Consider the entity type
 \[
 \text{Student}(\text{fname}, \text{lname}, \text{address}, \text{hobbies}, \text{age})
 \]
 and a particular student such that \(\text{fname} = \text{John}, \text{lname} = \text{Smith}, \text{address} = \text{Paris}, \text{age} = 10 \), and he can have zero, one or several hobbies. \(\text{hobbies} \) is a multi-valued attribute.

 – **derived**
 – Example: The \(\text{age} \) can be computed from the date of birth.
Attributes of an entity type

- No two entities in an entity type can have the same values for all attributes.

- A **key** (or **superkey**) is a set of attributes that uniquely identifies an entity.
 - Any superset of a superkey is a superkey.

- A **candidate key** is a minimum set of attributes that uniquely identifies an entity.
 - No proper subset of the candidate key is a superkey.

- Examples:
 - A social security number is enough to distinguish one entity customer from another.

```
Customer(ssn, fname, lname, address)
```
 - A name could be a superkey if no two persons have the same name.
• Notes:
 – There may exist more than one superkey.
 – The entire set of attributes of an entity type is always a superkey.

• A primary key is a candidate key chosen by the database designer as the principal means of identifying entities within an entity type.
 – Attributes of a primary key must be attributes that never or rarely change.

• An entity type with a primary key is said a strong entity type.
Entity type schema

- **Entity type schema:**
 - Entity type name,
 - Attributes (and their domains),
 - Key constraints.
 Representation of entities in a table

- We represent an entity type by a table (⇒ relation).
- We represent entities by rows in the table.
- Attributes are columns of the table.
- Problems?
- Will be discussed in a following chapter.
Graphical representation

- Rectangles: entity types
- Double rectangles: weak entity types
- Ellipses: attributes
- Double ellipses: multivalued attributes
- Dashed ellipses: derived attributes
- Diamonds: relationship types
- Lines: link attributes to entity types and entity types to relationship types
• **Relationship**: Relates 2 or more entities.
 – Formally a relationship among entities e_1, e_2, \ldots, e_n is a n-tuple: (e_1, e_2, \ldots, e_n).
 – Example: John *majors* in Computer Science. Bill is the *father of* Susan.

• **Relationship type**: set of similar relationships.
 – Formally a relationship type is a relation on entity types (set of relationships).
 – Example: *Student* (Entity type) related to *Department* (Entity type) by *MajorsIn* (Relationship type).

Graphical representation:
Relationship type attributes

- Attribute of a relationship type describes the relationship.

Examples:

Graphical representation:

- The depositor relationship type between a customer and an account may have the attribute access-date.
Degree of a relationship type

- A relationship type that involves 1 entity type is said **unary**.
 - Example: *ReportsTo* relationship type. A subordinate reports to his/her supervisor.

- A relationship type that involves 2 entity types is said **binary**.
 - Example: *MajorsIn*
- A relationship type may involve more than two entity types (rare use).

Example of a ternary relation: Bank employees can have responsibilities at multiple branches with different jobs at different branches. Then there is a ternary relationship type between entity types: employees, jobs and branch.
• The function that an entity plays in a relationship is called that entity’s role.

• Roles are in general implicit. However they are useful when the meaning of a relationship needs clarification.

• Roles labeled the edges representing a relationship.

• Consider the ReportsTo relationship type and “Bob reports to Mary”. “Bob reports to Mary” is represented by a tuple (Bob, Mary). Bob and Mary are both elements of the same entity type Employee. ReportsTo has roles Subordinate and Supervisor.
Relationship type cardinalities

- Constraints on number of entities that can be associated with an entity under a relationship type.
 - Analogy: one-to-one (injective) function.

- Consider entity types A and B and a binary relationship type R from A to B.
 - **one-to-many (1:n)** An entity in A is associated with any number (0 or more) of entities in B. An entity in B is associated with at most one entity in A.
 Example: An employee works in one company and a company has many employees.

 - **one-to-one (1:1)** An entity in A is associated with at most one entity in B and an entity in B is associated with at most one entity in A.
 Example: A department has only one chairman and a chairman can be the chairman of only one department.

 - **many-to-many (n:m)** An entity in A is associated with any number (0 or more) of entities in B and an entity in B is associated with any number (0 or more) of entities in A.
 Example: A student registers in different courses and a course has many students.
Examples of cardinalities

Diagram:

- **Student**
 - ssn
 - name
 - address
 - dateofbirth

- **Register**
 - n:m
 - Year

- **Course**
 - cname

- **Employee**
 - ssn
 - name
 - address

- **ReportsTo**
 - supervisor (1,1)
 - subordinate (1,n)
How to design an E-R model?

- There is no real receipts.
- What are the entity types and their attributes?
- What are the relationship types and their attributes?
- Implies deciding whether something is an attribute or an entity, or an entity or a relationship.
- Analyze of relationship types (cardinalities).
- Define the keys.
- Construct the E-R diagram.
- Sometimes an object can be represented either by an entity type or an attribute.
Entity or relationship?

- Sometimes an object can be represented either by an entity type or a relationship type.