Entity-Relationship model

- Chapter 2 in the book
- Chen 1976

Database design

- Goal: specification of database schema
 - Conceptual schema of data - Independent of the DBMS.

- Methodology:
 - Use E-R model to get a high-level graphical view of essential components (data) of the considered world and how they are related.

- E-R model: World viewed as set of:
 - Entities
 - Relations between entities

Entity

- Entity: a concrete object involved in the considered world.
 - Examples: a particular person (John), a particular class (CS387), a particular movie (Miss Congeniality), an academic department (CSIS)

- Entity type / Entity set: Set of similar objects.
 - Analogy: Entity/Variable - Entity Type/Variable type
 - Examples: students, classes, movies, departments

Entity type attribute

- Attribute: To each entity we associate a set of attributes that characterize it.
 - Examples: `fname` is an attribute for a student. `enrollment` is an attribute for a class.

- An Entity type is describe by a set of attributes.
 - Example: `Student(fname, lname, address, hobbies, age)`

- Domain of an attribute: Possible values of an attribute.
 - Examples:
 - `fname` is a string.
 - `age` is in `{0, 1, 2, ..., 149, 150}`.
 - `salary` is a positive real number.
• Different types of attributes
 – simple
 – Example: *fname*
 – composite
 – Example: Consider the entity type
 \[\text{Student}(\text{name, address, hobbies, age})\]

 name is composed of the first name, the middle name and the last name of a student.

 – single-valued
 – one value
 – multi-valued
 – Consider the entity type
 \[\text{Student}(\text{fname, lname, address, hobbies, age})\]

 and a particular student such that \(\text{fname} = \text{John, lname} = \text{Smith, address} = \text{Paris, age} = 10\), and he can have zero, one or several hobbies. \(\text{hobbies}\) is a multi-valued attribute.

 – derived
 – Example: The *age* can be computed from the date of birth.

Attributes of an entity type

• No two entities in an entity type can have the same values for all attributes.

• A **key** (or superkey) is a set of attributes that uniquely identifies an entity.
 – Any superset of a superkey is a superkey.

• A **candidate key** is a minimum set of attributes that uniquely identifies an entity.
 – No proper subset of the candidate key is a superkey.

• Examples:
 – A social security number is enough to distinguish one entity customer from another.
 \[\text{Customer}(\text{ssn, fname, lname, address})\]
 – A name could be a superkey if no two persons have the same name.

Notes:

• There may exist more than one superkey.

• The entire set of attributes of an entity type is always a superkey.

• A **primary key** is a candidate key chosen by the database designer as the principal means of identifying entities within an entity type.
 – Attributes of a primary key must be attributes that never or rarely change.

• An entity type with a primary key is said a **strong entity type**.

Entity type schema

• Entity type schema:
 – Entity type name,
 – Attributes (and their domains),
 – Key constraints.
Entity type graphical representation

- Person
 - sap
 - name
 - address
 - dateofbirth

Representation of entities in a table

- We represent an entity type by a table (⇒ relation).
- We represent entities by rows in the table.
- Attributes are columns of the table.
- Problems?
- Will be discussed in a following chapter.

Graphical representation

- Rectangles: entity types
- Double rectangles: weak entity types
- Ellipses: attributes
- Double ellipses: multivalued attributes
- Dashed ellipses: derived attributes
- Diamonds: relationship types
- Lines: link attributes to entity types and entity types to relationship types

Relationship

- **Relationship**: Relates 2 or more entities.
 - Formally a relationship among entities e_1, e_2, \ldots, e_n is a n-tuple: (e_1, e_2, \ldots, e_n).
 - Example: John majors in Computer Science. Bill is the father of Susan.
- **Relationship type**: set of similar relationships.
 - Formally a relationship type is a relation on entity types (set of relationships).
 - Example: Student (Entity type) related to Department (Entity type) by MajorsIn (Relationship type).

Graphical representation

```
[Student] [Majors] [Department]
```

```
name - address - dateofbirth
```

Object-oriented representation
Relationship type attributes

- Attribute of a relationship type describes the relationship.
 - Examples:
 - Graphical representation:

- The depositor relationship type between a customer and an account may have the attribute access-date.

- A relationship type may involve more than two entity types (rare use).
 - Example of a ternary relation: Bank employees can have responsibilities at multiple branches with different jobs at different branches. Then there is a ternary relationship type between entity types: employees, jobs and branch.

Degree of a relationship type

- A relationship type that involves 1 entity type is said unary.
 - Example: ReportsTo relationship type. A subordinate reports to his/her supervisor.

- A relationship type that involves 2 entity types is said binary.
 - Example: MajorsIn

Role

- The function that an entity plays in a relationship is called that entity’s role.

- Roles are in general implicit. However they are useful when the meaning of a relationship needs clarification.

- Roles labeled the edges representing a relationship.

- Consider the ReportsTo relationship type and “Bob reports to Mary”.
 - “Bob reports to Mary” is represented by a tuple (Bob, Mary). Bob and Mary are both elements of the same entity type Employee. ReportsTo has roles Subordinate and Supervisor.
Relationship type cardinalities

- Constraints on number of entities that can be associated with an entity under a relationship type.
 - Analogy: one-to-one (injective) function.
- Consider entity types A and B and a binary relationship type R from A to B.
 - **one-to-many (1:n)** An entity in A is associated with any number (0 or more) of entities in B. An entity in B is associated with at most one entity in A.
 Example: An employee works in one company and a company has many employees.
 - **one-to-one (1:1)** An entity in A is associated with at most one entity in B and an entity in B is associated with at most one entity in A.
 Example: A department has only one chairman and a chairman can be the chairman of only one department.
 - **many-to-many (n:m)** An entity in A is associated with any number (0 or more) of entities in B and an entity in B is associated with any number (0 or more) of entities in A.
 Example: A student registers in different courses and a course has many students.

How to design an E-R model?

- There is no real receipts.
- What are the entity types and their attributes?
- What are the relationship types and their attributes?
- Implies deciding whether something is an attribute or an entity, or an entity or a relationship.
- Analyze of relationship types (cardinalities).
- Define the keys.
- Construct the E-R diagram.

Examples of cardinalities

Entity or attribute?

- Sometimes an object can be represented either by an entity type or an attribute.
Sometimes an object can be represented either by an entity type or a relationship type.